

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Брянский государственный технический университет

Кафедра «Общей физики»

ОТЧЕТ по лабораторной работе №					
(название лабораторной работы)					
Выполнил студент группы					
(Ф.И.О)					
Отметка о допуске:					
Отметка о защите:					

Лабораторная работа №4

Определение модуля упругости стали.

Цель работы:

- 1. изучения поведения образца под нагрузкой и описание этого поведения с помощью кривой σ- ε.
- 2. определение модуля упругости стали по закону Гука.
- 3. ознакомление с методом измерения малых удлинений.

Теоретическое введение.

Под действием сил происходит деформация тел, т.е. изменение их размеров и формы. Вид деформации (упругая или пластическая) зависит от величины действующей силы, времени воздействия и температуры.

Поведение образца под нагрузкой описывается кривой σ - ϵ ., где σ - напряжение, равное $\frac{F_{_{\rm H}}}{S}$, ($F_{_{\rm H}}$ – нормальная сила, S – площадь сечения), ϵ - относительное удлинение равное $\frac{l-l_0}{l_0}$.

На рис.1 видно, что на начальных стадиях деформации зависимость между удлинением ε и напряжением σ - линейная, т.е. ε = $\alpha\sigma$, (1.1.)

где α – коэффициент упругости.

Соотношение (1.1) носит название закона Гука.

Линейная зависимость сохраняется до предела пропорциональности $\sigma_{nb.}$

Выше предела пропорциональности наблюдается отступление от линейности, хотя деформации еще упругие: т.е. после снятия нагрузки тела восстанавливаются. Напряжение, до которого деформации остаются упругими, называется пределом упругости σ_e . За пределом упругости образца меняется: после снятия нагрузки наблюдается остаточное удлинение ε_{ост}. Такие деформации называют пластическими. При некотором напряжении σ_t (характерном для каждого материала) наблюдается удлинение образца без увеличения напряжения (говорят образец « течет»). Этот участок носит название площадки текучести, σ_t – напряжение текучести. Для продолжения деформирования приходится увеличивать прикладываемые напряжения, на кривой наблюдается подъем. Этот участок кривой соответствует деформационному $\sigma_{\scriptscriptstyle B}$, образца. При напряжении, равном vпрочнению разрушение образца. Это напряжение носит название предела прочности.

Описание метода и установки.

При определении модуля упругости твердых тел приходится измерять очень малые удлинения этих тел при растяжении. Для этой цели используется установка (рис.2), в состав которой входит оптическая труба.

(рис.3).

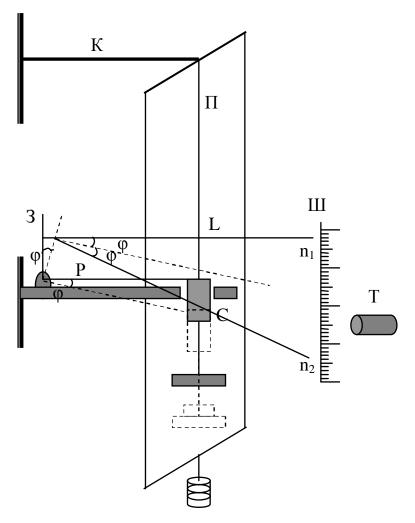
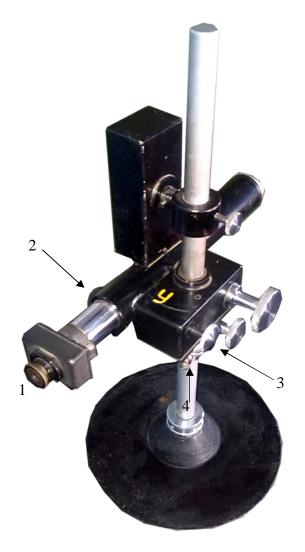



Рис.2

Исследуемым телом является стальная проволока Π , верхний конец которой закрепляется в неподвижном кронштейне K, нижний конец проволоки имеет цилиндрическую оправу C, соединенную с концом горизонтального рычага P, который предохраняет проволоку от качания. Зеркало R, труба R и шкала R служат для измерения удлинения проволоки R.

Для устранения влияния кронштейна К на показания прибора все грузы, которыми пользуются в опытах, подвешены к кронштейну, поэтому его изгиб сохраняется постоянным и систематическая ошибка исключается. Рычаг зеркала жестко связан с ним и имеет длину г. Расстояние от зеркала до измерительной шкалы L.

- 1. наводка на резкое изображение перекрестия
- 2. наводка на резкое изображение объекта
- 3. наводка в вертикальной плоскости
- 4. наводка в горизонтальной плоскости.

Рис.3

Пусть в начальный момент с нитью трубы совпадает деление шкалы n_1 . При удлинении проволоки на Δl рычаг г вместе с зеркалом повернется на угол ϕ . На эту же величину изменяются углы падения и отражения лучей от зеркала, а общий угол между падающим и отраженным лучами изменится на 2ϕ . Из рисунка следует, что $tg\,2\phi=\frac{n_2-n_1}{L}$, где n_2 - деление шкалы, совпадающее с нитью трубы после поворота зеркала. Обычно угол ϕ очень мал, поэтому можно считать $tg\,2\phi{\approx}2\phi$. Следовательно, $\phi=\frac{n_2-n_1}{2L}$. Зная угол поворота зеркала и длину рычага r, можно найти абсолютное удлинение проволоки: $\Delta l=r\cdot\phi=r\frac{n_2-n_1}{2L}$.

Коэффициент упругости α в законе Гука и модуль упругости ϵ связаны между собой как величины взаимообратные, т.е.

$$E = \frac{1}{\alpha} \tag{2.2}$$

Используя соотношение (2.2) закон Гука можно записать

$$\frac{\Delta l}{l} = \frac{1}{E} \cdot \frac{F_{H}}{S} \tag{2.3}$$

откуда

$$E = \frac{\frac{F_{H}}{S}}{\frac{\Delta l}{l}} = \frac{\sigma}{\varepsilon}$$
 (2.4)

Модуль упругости характеризует упругие свойства материала. Из соотношения (2.4) следует, что модуль упругости Е равен такому приложенному напряжению, при котором относительное удлинение стержня было бы равно единице. металлические материалы не выдерживают таких напряжений, они разрушаются раньше, чем будут растянуты вдвое.

Техника безопасности.

- 1. При выполнении лабораторной работы необходимо соблюдать общие правила безопасности при работе на электроустановках.
- 2. Во избежании нанесения травмы осторожно обращаться с грузами при снятии и навешивании.

Порядок выполнения работы.

- 1. С разрешения преподавателя включить лампочку освещения шкалы Ш, чтобы в зеркале 3 были видны верхние деления шкалы. Устанавливают трубу Т таким образом, чтобы с нитью трубы совпадало некоторое деление n₁ и записывают его в таблицу 1.
- 2. Последовательно нагружая проволоку грузами один за другим, производят отсчеты делений шкалы n_2 , наблюдаемых в трубу. Определяют разность отсчетов (n_2-n_1) , соответствующую нагрузке на проволоку.
- 3. Вычисляют соответствующее абсолютное удлинение Δl по формуле (2.1) и относительное $\frac{\Delta l}{l_0}$. Длина проволоки l_0 и рычага г указанны на установке.
- 4. Микрометром измеряют в нескольких местах толщину проволоки, находят среднее значение d и заносят в таблицу 1.
- 5. Вычисляют нормальные напряжения σ_n , прикладываемые к проволоке.
- 6. Результаты вычислений ε и σ заносят в таблицу 1.

Таблица 1.

n ₁ , MM	n ₂ , MM	n_2 - n_1 , MM	Δl	$\frac{\Delta l}{l}$	d, мм	σ_{n}
				$l_{\scriptscriptstyle 0}$.		

- 7. В координатной сетке ε - σ откладывают полученные точки.
- 8. Для нахождения модуля упругости используем метод парных точек.

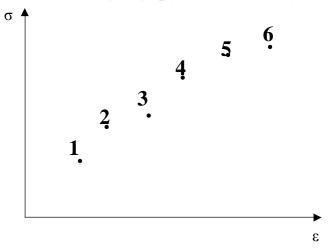


рис.4

Нетрудно увидеть, что модуль упругости будет равен тангенсу угла наклона прямой, т.е. $tg\beta$ =E. Требуется найти наилучшее значение тангенса угла наклона и его ошибку. Прономеруем точки по порядку от 1 до 6 (рис. 4). Возьмем точки 1 и 4, ими определяется некоторая прямая и, следовательно угол ее наклона, рассмотрим точно также другие пары точек (2 и 5, 3 и 6), получим в итоге три значения тангенса угла наклона. В качестве наилучшего значения $tg\beta$ выберем среднее арифметическое ($tg\beta_{cp}$).

- 9. Провести на графике прямую, соответствующую закону Гука.
- 10. Наути среднеквадратичную ошибку по формуле

$$\sigma_E = \sqrt{\frac{\sum (tg\beta_i - tg\beta_{cp})^2}{n(n-1)}}$$
, где n = 3

Контрольные вопросы.

- 1. Кривая σ-ε.
- 2. Закон Гука, пределы применения.
- 3. Описать метод определения малых удлинений.
- 4. Сущность метода парных точек.

Список рекомендуемой литературы.

- 1. Трофимова Г.И. Курс физики. М.: Высш. шк., 1990. §21.
- 2. Савельев И.В. Курс общей физики. Т.1. Молекулярная физика. Учеб. пособие для студентов втузов. М.: Высш. шк., 1973, §45.